
NASACONTRA

REPORT

m
gc
0
N

M
U

CTOR YASA CR-2093
<I,/ -

LOAN COPY: RETURN TO
AFWL (DOUL)

KIRTLAND AFB, N. MI

L COMPARISON OF GENETIC ALGORITHMS
WITH CONJUGATE GRADIENT METHODS

: by Jack Bosworth, Normm Foe, und Bernard P. Zeigler ‘I
d

f Prepared by

j THE UNIVERSITY OF MICHIGAN 5
g Ann Arbor, Mich. 48 104,

;: for Langley Research Center

‘i I ‘5
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, D. C. . AUGUST 1972

TECH LIBRARY KAFB, NM

1. Report No. 2. Government Accession No.

-I NASA CR-2093
4. Title and Subtitle

COMPARISON OF GENETIC ALGORITHMS WITH CONJUGATE GRADIENT
METHODS

3. Recipient’s Catalog No.

5. Report Date

August 1972

I
6. Performing Organization Code

7. Author(s)

-.
6. Performing Organization Report No.

Jack Bosworth. Norman Foo, and Bernard P. Zeigler

9. Performing Organization Name and Address

The University of Michigan
Logic of Computers Group
Computer and Communication Sciences Department
Ann Arbor, Michigan 48104

003120-1-T
10. Work Unit No.

11. &ntract or Grant No.

NGR-23-005-04 7

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration
Washington, D.C. 20546

14. Sponsoring Agency Code

___. .--. .~
15. Supplementary Notes

16. Abstract

Genetic algorithms for mathematical function optimization are modeled on search
strategies employed in natural adaptation. Comparisons of genetic algorithms with
conjugate gradient methods , which have been made on sn IBM 1800 digital computer, show
that genetic algorithms display superior performance over gradient methods for functions
which are poorly behaved mathematically, multimodal functions, and functions obscured by
additive random noise. Furthermore, genetic methods offer performance comparable to
gradient methods for many of the standard functions.

7. Key Words (Suggested by Authoris)) -~ 16. Distribution Statement

Function optimization
Mathematical Programing Unclassified - Unlimited

19. Security aassif. (of this report)

Unclassified
20. Security Classif. (of this page)

I Unclassified
lZl.NoGPap.

*For sale by the National Technical Information Service, Springfield, Virginia 22151

I. Introduction

A function optimization problem may be defined as follows: Given

a real valued function defined on a finite dimensional space, find the

points of the space at which the function attains its optimum (minimum

or maximum) values. A direct sear& aZgoritkm for solving such an

optimization problem is an iterative step-by-step procedure which samples

a number of points in the space until a point is found which is apparently

optimum.

Function optimization problems requiring direct search algorithms

arise from the general area of the design of optimal control systems

(Athans and Falb (1966)). The optimal point of view, when applied to

the control of aerospace vehicles or chemical processing plants, for

example, involves control systems which perform optimally according to

some pre-determined criteria of performance. Often the design of such

systems leads to function optimization problems which cannot be solved

analytically and therefore necessitate direct search algorithms for their

solution (Kalman, Falb, Arbib (1969), Lavi and Vogl (1965)).

In many control applications, however, not enough is known about the

plant (controlled system) behavior to formulate beforehand a realistic

optimal control problem. In this case, one may design a control system

from the adaptive control point of view (Bellman (1959), Mishkin and Braun

(1961), Feld'baum (1966), Sworder (1966)). An adaptive control system

attempts to optimize the performance of the plant "on line", i.e., the

controller attempts continually to improve the plant's performance, its

actions being based upon its record of past plant responses to control

inputs and environmental disturbances. An adaptive controller must possess

as essential subcomponents, direct search algorithms which can direct the

search toward optimum points of the criterion function (Wilde (1964),

Hall and Ratz (1967)).

Thus the successful design of optimal and adaptive control systems

rests critically on the existence of useful direct search algorithms for

solving function optimization problems. The value of a direct search

algorithm in any application depends on its ability in the first place

to converge (i.e., to actually locate the optimum in a finite time) and

secondly, to converge rapidZy (many algorithms can be guaranteed to eventually

locate the optimum but do so much too slowly for practical application).

Thirdly, it is important that such an algorithm not be misled by random

variations in the criterion function (arising, for example, by digital

roundoff error or plant disturbances) into settling on apparent optima

far removed from the actual ones.

Genetic algorithms are direct search algorithms which are modelled

upon search strategies employed in natural adaptation.

Attempts were made by Fogel, Owens and Walsh (1966) and Bremermann

(1966) to implement some of the search strategies employed in natural

adaptation. The techniques employed by these workers only superficially

resembled those known to exist in nature (Mayr, 1965) and the studies

did not yield information concerning the comparative convergence properties

or cost and complexity of the genetic algorithms. More sophisticated

algorithms employing the mechanisms of crossover, inversion, mutation

and reproduction at the genotypic level have been developed by Rosenberg

(1967), Bagley (1967), and Cavicchio (1970). These workers obtained

experimental results indicating the superiority of the-genetic algorithms

to competitive methods in the areas of pattern recognition and biochemical

adaptation which they explored. Holland (1969a,b,c) has undertaken a

systematic theoretical analysis of these methods. His work concerns the

existence of an ideal reproductive plan which is "good" in comparison

to any other plan, i.e., it sustains only a finite loss over infinite

time when compared to any other plan. This criterion is a formalization

of the requirements that a search algorithm be "efficient" and "robust"

over a broad range of test problems.

Hollstien (1971) developed a class of genetic algorithms for function

optimization. He has shown that these algorithms are capable of achieving

convergence on functions which are multipeaked and discontinuous where

as classical hill climbing methods operate well only on sufficiently smooth

single peaked functions.

In this paper we are concerned with the convergence rates of genetic

algorithms in comparison with other methods. As a beginning, we investigate

the convergence rates of genetic methods relative to those of the conjugate

gradient (variable metric) methods (Luenberger (1964), Pearson (1969),

Polak (1971)) on test problems typical in the latter area. This

is a severe test for the genetic methods since on the one hand they do not

employ derivative extraction techniques for guidance (which is available

from the analytic structure of the usual test function) and on the

other hand the conjugate gradient methods have been honed to the point of

extreme efficiency for these functions. Thus from this point of view

one may expect relatively inferior performance from the genetic methods.

Some positive indications for performance however arise from studies by

Rastrigin (1966) and Schumer (1968) which indicate that random step size

methods can be more efficient than fixed step size gradient methods. Since

Hollstien claims superior performance for his methods over those of

3

Rastrigin this opens the possibility that genetic methods can compete favor-

ably with the conjugate gradient methods (which are themselves more

powerful than the fixed step size gradient methods).

4

--- ~-- -.

II. Description of Program

As work progressed on our optimization program it naturally underwent

a number of modifications. We shall attempt to portray this evolution

by describing four stages of development (I,II,III,IV). After the

description the theoretical and experimental developments which motivated

these modifications will be discussed.

We consider maximization of real valued n-ary functions of the form

f:Rn + R.

A chromosome (or string) is a list of coordinate values of an

n-dimensional vector with an associated inversion pattern. An inversion

pattern is a permutation of the sequence l,...,n say il,...,i . If a n
string is a 1 ,...,an with inversion pattern i 1 ,...,i n this means that there

is a point in n-space which corresponds to the string such that its i. th
I

coordinate is a..
3

For example, let n=4, and the string be .l, .02, 1.3,

-.4 with inversion pattern 1,4,2,3 then the corresponding point is (.I,

1.3, -.4, .02).

The function va2v.e associated with a string is just the value of the

function (currently being optimized) at the corresponding point. Thus

the value associated with the above string is f(.l, 1.3, -.4, .02) (not

fC.1, .02, 1.3, -.4)).

Version I

The basic flow diagram for Version I is as follows:

5

--- --..-I-~-.---_I__ __-. - _

cross-over

no

Forty strings were maintained in four subpopuZations of ten strings

each. Only one inversion pattern was associated with each subpopulation.

I.e., any two strings in the same subpopulation had the same associated

inversion pattern. A vector called the utility vector was maintained

giving the function value of each string.

Selection consisted of ordering each subpopulation by function value

(i.e., the best string is the one with the highest function value) and

then replacing the lowest four strings by the best four strings (in each

subpopulation).

Cross-over consisted of picking at random two coordinates for each of the

two pairs (7,8) (9,lO) of strings in each subpopulation. These are called

pivot points. Then all coordinate values between and including the pivot points

are exchanged between pair members. For example suppose we have a pair

of strings a 1 ,...,a 5 and bl,..., b5 with inversion pattern 1,2,3,4,5 and

with pivot points 2 and 4 say. The resulting strings are alb2b3b4a5 and

bla2a3a4b5'
Inversion consisted of ordering the four subpopulations by their

best strings, 1 copying the best two subpopulations into the worst two

subpopulations, and changing the inversion patterns of the copies as

‘1 In each subpopulation the string with the highest function value is
found (the best string of the subpopulation) and the subpopulation '
with the highest "best string" is best, etc.

folloWs. To change the inversion patterns, two pivot points were chosen

for each copy and all strings were inverted about these pivot points,

I.e., if al,..., a3 is a string of a subpopulation with pivot points 2 and

4 say, then the new string is ala4a3a2a5.

Mutation was more complex. A probabitifg vector was included in the

initial parameter specifications. The vector had four coordinates. Each

coordinate specified the probability of using a corresponding method of

mutation on any given string.

The methods of mutation were:

1) Fletcher-Reeves (FR) Mutation. A version of the Fletcher-Reeves

(1960) method which could be applied a controlled number of times q to

a point (without reinitialization).2 When q=l this reduces to gradient

mutation, i.e., an approximate gradient was taken at the point specified

by the string to be mutated and a "Golden Section" one dimensional search

was made along the line from the point specified by the gradient with limits

which were initialized. 3

2) UnifoMn random mutation of coordinates. An integer, the number

of coordinates to be mutated, was chosen randomly between 1 and n, say m.

m integers (the actual coordinates to be mutated) lvere chosen randomly

between 1 and n, say il,...,im. m numbers (the mutation amounts) were

chosen randomly between initialized limits symmetric about 0, say rl,...,rm.

Finally rj was added to the i.th coordinate of the point.
7

3) Quadratic Gaussian ApproximatZon. m and il,...,im were

chosen as in 2). 2m numbers were chosen randomly between -1 and 1, say

rl,l'rl,2'""rm,l~rm,2~ If & is the initialized number determining the

"standard deviation"of this mutation, then r.
JXrj,2

l L is added to the

i.th coordinate of the point for each j=l,...,j=m.
1

2 Since everytime the routine is called its remembered gradient is set to
0 this is equivalently a reset mode of operation with reset interval q.

jOur Fletcher-Reeves method uses 2n samples for its gradient estimation and
30 samples for its one dimensional search per iteration (n is the dimension
of the space). 7

4) zero mutation. The string is left unaltered.

For each of the forty strings one of these four methods of mutation

was chosen according to the probability vector and applied to the point

corresponding to the string. The resulting point was converted to a string

with the same inversion pattern as before and the utility vector was

updated by applying the function to the point.

The initiaZization consisted of reading in parameters and initializing

the strings to random coordinate values between two bounds, say -2 and 2.

The four inversion patterns were all set to 1,2,3,4...n. The utility vector (function

value vector) was initialized with the associated function values. All

other parameters were considered to be subject to experimental manipulation

and initialized accordingly.

Version II

Version I was modified to create Version II in the following ways:

Selection replaced the worst four strings in each subpopulation with

four strings from the same subpopulation as follows. The strings are

rated 1 ,...,lO and 7,8,9 and 10 are replaced. String 7 is replaced by

string 1. String 8 is replaced by string i where i is (uniform) randomly

chosen from 2,3,...,10. String 9 is replaced by string 2 unless i=2 in

which case 9 is replaced by 3. String 10 is replaced by a string chosen

randomly from those remaining. Thus the best two strings are always

duplicated by the selection.process. (None of the replacements were made

until all strings were chosen.)

Cross-over was done in the same way. Note that the selection now

caused cross-over to occur between the best strings and randomly chosen

strings, rather than among the best strings themselves.

The four mutation methods of I were used except that 2) was altered

8

as follows:

2') Cubic Gaussian Approximation. rl,...,rm were chosen randomly

between -1 and 1 then added ri*L to the i,th
J

coordinate.

A fifth method was added:

5) Uniform Raxdom with VariabZe Limits. This method was like the

old 2) but the limits between which rl,..., rm were chosen were different

for different coordinates of the point. Let these limits be

-l.l,.L1'-L2,.L2,...,-& ,L . Before this mutation was done the maximum and nn
minimum coordinate values were found for each coordinate, say ai and.ai,

.th respectively for the 1 coordinate. 4. = a;-a. 1 1**

Each string was mutated as before, but when the best string in

each subpopulation was mutated (according to the probability vector),

the mutant replaced the worst member in the subpopulation (the best string

was also saved unmutated). _-

The major addition to the program structure was a second level ,

"adaptation" routine which controlled some of the parameters previously

fixed at initialization. These parameters included the%tandard deviatiofl'

L used in methods 3) and Z'), the probability vector (determining the

disposition toward selecting a particular mutation method). The adaptation

was based on a history vector which contained information concerning

how often and when each mutation was used, the average mutation which

resulted in applying mutations 2') and 3) for each subpopulation, and the

highest function value present in each subpopulation before mutation.

The adaptation routine used was similar to that of Schumer and Steiglitz

(1968). The variance determining parameter L was modified according to

whether large mutation amounts or small ones proved more fruitful in

producing increases in the function value. A more complete description

of this routine is given in Appendix A.

9

Version III

The flow diagram for Version III is as follows:

I- initialization I

The major change introduced was that there was no partitioning of the popula-

tion into four distinct subpopulations. The population size was determined dyn-

amically but was limited to at most 40. Because separate subpopulations

each sharing a common inversion pattern were not maintained some convention

had to be adopted in order to achieve crossover between strings with

different associated inversion patterns. One possibility, that of

allowing crossing over only between strings having the same inversion

pattern was rejected (for the difficulties in this strategy see

(Bagley (1557)). Instead cross-over was allowed between arbitrary strings

with the inversion pattern of the better string of the pair determining

the alleles to be crossed-over. In essence, the heuristic is that the

inversion pattern of the better string is in fact the better inversion

pattern. More detail will be given in a moment.

The mutation routine differed from the previous mutation routines

in the following ways. A parameter ml (determined by initialization)

10

was defined as the number of strings to be mutated. Suppose the program

began with m strings (m assumed notless than ml), then the ml strings

which had the highest associated function values among the initial m strings

were chosen. These ml strings were copied. Each of the ml copies was

mutated using a method chosen randomly with the probability vector deter-

mining the frequency of selection of any given mutation method. The mutation

methods were the same as l), Z), 3) and 2') of Version II. Method 5)

was not implemented in the Version III mutation routine. (As before,

the utility vector was updated and the history vector was maintained.)

The adaptation routine was essentially the same as the adaptation

routine of Version II (allowing for the differences in the structure

of the history vector). The major difference was that a weighting scheme

was introduced to evaluate method effectiveness so that a heavily weighted

method had to produce a higher percentage difference in the best function

value than a method not weighted so heavily in order to have the ratio

of the probabilities of these two methods remain the same. These weights

were initialized.

The cross-over routine was altered as follows. Let m2 be the

initialized parameter indicating the number of strings which the routine

would operate on. Z-ml (the number of strings leaving the mutation routine)

was assumed greater than or equal to m 2’ The best m2 strings among the

Z-ml strings were chosen. Cross-over initiated by copying the strings

present and pairing the copies randomly. Then the alleles (coordinate

values) of the string with the higher function value between and including

the pivot points were exchanged with the corresponding alleles of the

other string. Equivalently the normal cross-over operation is performed

11

except that the inversion pattern of the worse string is replaced by that

of the better string before the exchange is begun. After the exchange

one of the daughters receives.the worse string's inversion pattern (the

other daughter inheriting the better string's pattern). For example, if

ala2a3a4a5 with pattern 12345 and blb2b3b4b5 with pattern 54321 are to

be crossed over, first create b5b4b3b2bl with pattern 12345 and do the

cross-over as usual. With pivot points 2 and 4 for example, we obtain

alb4b3b2a5 and b a a a b . 52341 One of these is given pattern 12345 while

the other gets 54321.

The number of successive cross-overs was not held at one (as before),

but was determined by an initialized maximum bound i subject to the

constraint that the process was to be stopped if the population size reached

40. (Note that the population doubles at each successive cross-over

and 2' = 32 so i < 5.)

The inversion routine always produced ml strings. Assuming the

entering population size exceeded ml the best 'ml/Z' (the least integer

greater than ml/Z) strings were chosen. Each such string was copied and

the inversion pattern of the copy was determined by randomly chosen pivot

points as before. (Production was halted when ml strings were produced.)

Version IV

Version IV was exactly the same as Version III except that in the

mutation routine some of the original ml strings were mutated as well.

Thus an initialized parameter mi < ml determined that mi randomly chosen

strings from the original ml strings not including the best were to be

mutated in the same manner as the ml copies already produced.

12

III. Test Functions

The following functions we used as test functions to be optimized:

1. Spherical Contours

fl(X) = “co x2 .
is1 '

2. Index
40

f2(x) = C ix:
i=l

3. Index squared

f3(x) = %Oi'xf
i=l

4. wood
22 f4(x) = 100(x2-x1)+(1-x1) 2

22 + 90(x4-x3) +(1-x3) 2

+ lO.l((x,-1)2+(x4-1)2)

+19.8(x2-1)(x4-1)

5. VaZleys

fg(x) = Z i2(x5+i-xi)2+ixij
i=l

6. Repeated Peaks

f6 (‘) = (4i~lxi (‘-‘i)) ~+~ xs] -x5)(“5-[‘51) ’ xs1 (~x5~+1)

for x. > 0
1

i = 1,2,3,4 and x 5z1

= 0 otherwise4

Functions 1 through 4 are standard in the direct search literature.

We invented 5 and 6 to test our hypotheses concerning algorithm behavior.

4[x] is the integer part of x,' e.g., [1.5] = J.

13

NOTE: Functions l-5 are to be minimized so that in the program f(x)

is replaced by -f(x) and the standard maximization formal is satisfied.

14

IV. Comparison of Genetic and Classical Methods

As stated before, one of our primary objectives was to compare the

performance of genetic and classical methods in the realm of numerical function

optimization. We hoped to ascertain in this way whether genetic methods

could utilize the local structure of analytic functions sufficiently

well to compete favorably with classical methods which employ gradient

extraction routines.

Our approach was to compare the best of our genetic routines constructed

to date with the Fletcher-Reeves method. Of course the results obtained

are strictly speaking only relevant to the particular methods compared and

the means of comparison. However since the latter were selected with

their role of class representatives in mind we have reason to believe that

our conclusions may have general validity.

The experiment consisted of running Version IV against a control

Version II called FRl in which Fletcher-Reeves is the only mutation method.

More specifically, FRl had the Version II structure except that the mutation

routine now had the form: apply the Fletcher-Reeves method with reset

interval q = n (where n is the number of variables in the function) to

the best string in each subpopulation.

Version IV and FRl were applied to each of the test functions 2 through

5 with the same initial set of points.

The resuZts are shown in Tables 1 and 2. In Table 1, we record for

each test function the number of function evaluations taken by FRl each

time the mutation routine is executed. In comparison the number of

15

TABLE 1

Test Function

2. Index

3. Index Square

4. Wood 656 164

5. Val 1 eys 2,100 525

Number of FRl
Function Evaluations

per generation

actual

17,616

17,616

divided by 4

4,404

4,404

Number of Version IV
Function evaluations needed

to achieve same change in
function value

55,800 15
11,475 1.46

90 .12

19,800
4,400
5,500
3,200
3,500
3,500

45 .8
45 .3
45 .189
45 .292
45 ,385
45 .238

270 .34
90 .28
90 .525
90 .315

3780 .583
3240 ,479

0 .00001
0 .006
0 .o

40,770 1.669
18,900 .643

1,566 1.2
5,220 .71
1,392 .88
3,132 1.3

Corresponding change
(order of magnitude)

-

TABLE 2a

Test Function

1. Spherical Contours

2. Index

3. Index Squared

4. Wood

5. Valleys

6. Repeated Peaks

Function
value attained

1o-3g

-1.0 x lo-l5

-2.0 x 10 -10

-1.46 x 1O-6

-3.4 x 10 -9

11.999

Number of function
evaluations

actua

110‘

52,848

.05,696

11,152

8,400

m

'Rl
divided
by 4

13,424

26,421

2,790

2,100

03

T Version IV

52,800

67,725

40,000

68,000

11,310

5,070

*The figure given in the number of function evaluations required by our
optimum gradient method (Fletcher-Reeves with q = 1) which converged
in one iteration.

17

TABLE 2b

Test Function

2. Index

3. Index Squared

4. Wood

5. Valleys

Function
value attained

1.6 x lo-l9

1 x 1o-22

1 x lo-l4

2.4 x 10 -13

Number of Function
evaluations required by

Version IV after FRl hung up

86,175

94,140

200,000

93,544

18

-..- _._,.-_.----.,_-_-_--,_,.-- --- --,m. ,-..,.,.-1.1 l,~..~..~--,,,l..,.-,~,-, I._.. ,,-~-1,.,,.,, ,.,11.--1-m..111mm mm...,,., 1.1..-1-11m1 1.1mm.m1.1.11’

function evaluations taken by Version IV to achieve the same change in

function value is indicated (along with the change in value achieved).

The function value attributed to a population is that of its best string.

In Table 2awe record the total number of function evaluations taken

by the methods to reach the indicated level.

In these tables we have given both the actual number of FRl function

evaluations and this number divided by 4. The latter is a lower bound

on the number of function evaluations were the classical Fletcher-Reeves

method (i.e., our method in its nonHUform) to be applied to the best point

in the initial population.

It may have become apparent to the reader that we face the difficulty

here of comparing the parallel operating genetic methods with the sequential

conjugate gradient methods. Our genetic algorithms must start with a number

of initial points. The Fletcher-Reeves method begins at one point. We

have observed that the rate of convergence of Fletcher-Reeves may be quite

variable depending on the nature of the current search region (for example

whether it is locally quadratic or near a sharp ridge) and the number of

iterations taken since the last re-initialization.

Clearly some kind of aggregate behavior of a method over the search

space is required for meaningful comparison. While parallel methods lend

themselves more to this form of analysis little is known analytically for

either type of method in the present context. Then too which aggregate is

to be used: the maximum rate of convergence? the average? the minimum?

What if a method fails to converge from some starting points but converges

rapidly from others?

19

As already indicated, our decision was to embed the Fletcher-Reeves

method in a Version II genetic program. If we ignore the effects of cross-

over: this is equivalent to applying Fletcher-Reeves to the best point in each

of the 4 subpopulations, the number of function evaluations required to

reach a given function value level being then four times the number required

by Fletcher-Reeves applied to the point which reaches this level first.

knowing before hand which of the four initial points would actually reach

this level first we would need only l/4 of the total. Thus the "divided

by four" columns of Tables 1 and 2a represent an "optimistic" estimate of

Fletcher-Reeves efficiency. This optimism will be well founded if the var-

iability of convergence is low (so that knowing which starting point is

ultimately best is unimportant) and inappropriate if the variability is in

fact high in which case the "pessimistic" upper bound is justified.

Our results indicate that except for the behavior on the spherical

contours, Wood and Repeated Peaks function there is not a vast difference

in convergence rates.

The behavior on the spherical contours functions points out Version

IV's lack of gradient extraction facilities. On this function, Fletcher-Reeves

(or just optimum gradient) can follow a one-dimension search in the gradient

direction directly to the optimum.

The Wood function results indicated that Version IV is not a very

good ridge follower. (Its initial progress is comparable to FRl but it

seems to get hung up in mid course though its mutation facilitates enable

it to make a recovery).

Repeated Peaks is a multiple peak function and thus should be beyond

the abilities on any local hill climbing method. This is substantiated

in the fact that FRl hangs up on the local peak on which it is initiated.

5Actually our observations indicate that crossover has little effect in
the FRl context.

20

Of course for the comparison here to be truly meaningful a global search

level should be superposed above the Fletcher-Reeves local search.

The conclusion that convergence rates are comparable on Functions

2 through 5 should be discussed in view of some results of Rastrigin (1963),

Schumer and Steiglitz (1968) and Hollstien (1971). The first two references

show that on functions of type 1 through 3 a random directional step

method can be significantly more efficient than a gradient method with

step size fixed at the same value. Hollstien claims superior convergence

for his genetic algorithms over the random directional methods.

It follows then that Hollstien's genetic algorithms outperform the

gradient methods with fixed step size.

It is crucial here to note that the gradient methods referred to by

Rastrigin are of the fixed step size type and not of the conjugate gradient

class which we considered. The efficiency of the latter conjugate gradient

methods (of which Fletcher-Reeves is a good representative6) is known

to a exceed that of the fixed step gradient.7 Thus the question remains

open as to how the random direction methods compare with the conjugate

gradient methods and hence how Hollstien's genetic methods compare with

the gradient methods. Our present results thus add essentially new infor-

mation to this comparison.

61n a comparison of 7 conjugate gradient methods including the well-known
ones, Pearson's (1969) results show that in terms of the number of
one-dimensional searches, Fletcher-Reeves is superior to all others
(except Newton Raphson) when operated in the reset mode (as it is here)
on the Rosenbrock and Wood functions. Thus we chose Fletcher-Reeves since
it is both more simple and efficient on the "well-behaved" functions we
considered. (On the "penalty functions" considered by Pearson the situation
is drastically reversed with Pearson's method #3 coming out well on top.)

7This can be seen in any of the texts referred to in the literature survey
and is essentially due to the use of one-dimensional rather than the
much more costly n-dimensional searches.

21

Actually, Schumer compares his method with Newton Raphson on
n2 C xi

i=l
(our function 1) and ? x4 and finds it inferior on the former for

i=l

n < 78 and superior on the latter for n > 2. The comparison is in terms

of the number of function evaluations and it appears that Schumer's method

increases linearly while Newton Raphson increases quadratically in this

regard (essentially because second partial derivatives must be estimated).

As we have indicated the function evaluations per iteration required by

Fletcher-Reeves increase only linearly in dimension and on the : x2 and .
i=l l

n4 C functions it should far surpass Newton Raphson in this measure.
i=l

xi

In fact, Table 2a shows that our Fletcher-Reeves requires only 110

samples compared to the 330 required by Schumer's method and the 1500 required

by Newton Raphsonl (Data taken from Schumer's Figure 4). Thus the

classical Fletcher-Reeves should be uniformly better than Schumer's method

on Spherical Contours for any finite dimension.

It is interesting also that Schumer's method proved not very effective

as a ridge follower as indicated by its inferior performance on Rosenbrock's

function.

It should be noted that Version IV'was able to reach much lower function

value levels than was FRl. This is shown in Table 2b which gives Version IV's

behavior starting from the levels indicated in Table 2a. The latter levels

are those for which FRl's progress terminated. (This may be an artifact of

our Fletcher-Reeves realization.)

lActually the difference is-53 en more striking when it is considered that
Fletcher-Reeves reached 10 from point (2,2,. ..,2), while Schumer's data
are for the level 10-8 starting from (l,l,...,l). Note that Version IV's
performance fell in between the Schumer and Newton Raphson methods.

22

V. Evolution from Version I to Version IV

5.1 Mutation and Second Level Adaptation Routines

Initially, only mutation method 1) was used. It involved a uniform

random selection of coordinates (loci) and values (alleles). Methods

3), 2') and 5) were introduced in order to bias the distribution toward

small changes. This improved convergence by helping the system move

off false resolution ridges (Wilde, 1965). Later we discovered that

adding a second level routine (Version II) to modify the biasing on the

basis of past experience considerably improved performance. Table 3a

indicates the effectiveness of the adaptation routine. Our analysis of the

reasons for the improvement obtained is as follows.

As a run progresses the best alleles must be changed less in order

to improve. For this reason, the standard deviation of a random mutation

must decrease in order to improve the probability of a better mutation.

To this end we implemented some history vectors and added a program to

adapt the mutation parameters in a Bayesian approximation. Thus, if a

smaller mutation had worked best, the standard deviation was decreased

and like-wise for a larger mutation. If there has been no improvement

in function value over the period of history the standard deviation was

halved assuming that it had been too large. When the parameters became

too small for the accuracy of the machine, they were reset to maximal

values.

It was apparent that the kind of mutation which worked best at

one point in a run was sometimes different for a different part of the run.

For this reason more history was kept and the probabilities of the differ-

ent mutation methods were changed. This seems to work but does not usually

give marked improvement in the performance of the system.

23

Non-uniform distributions worked better than uniform ones when no

adaptation was applied since there was a higher probability of small

change.

With the adaptation, uniform works best under certain conditions

since the probability of making the right size change is higher and adap-

tation can progress faster. Under different conditions the uniform is

more likely to put the adaptation parameter in a "quasi-stable" state

where change is quite smooth but too slow to be useful.

By a "quasi-stable" state we mean a situation in which the adjusted

parameter is maintained for a long period of time at a suboptimal value.

This can happen in our present system since we include no random or

regular reset. Resetting of the parameter occurs only when it has passed

below a preset limit. Thus a situation in which the parameter is not

below the preset level but is still too small to cause significant changes

in the function values of mutated points will result in "quasi-stable"

state since the information fed back to the adaptive routine is insufficient

to cause a directed change in the parameter setting.

We tested the more complicated variable limit mutation (5) against

the simpler quadratic mutation (2). Table 3b indicates that 5) was indeed

better than 2) on the two functions shown. However, used with the additional

adaptation routine the extra variability of 5) was redundant in view

of the adaptive flexibility (i.e., controllable variability) introduced

by the latter (adaptation) routine.

We were interested in the extent to which gradjent information could

be encorporated into the genetic algorithm structure. Employing Fletcher-

Reeves as a mutation routine does not give much of an answer to this

question since on the test functions employed it tends to speed up con-

vergence to such an extent that the essential genetic elements (cross-over

24

TABLE 3a

Number of function evaluations required by Version I V.S. Version II.

(All parameters are set to the same values except that Verstion II employs

a second level adaptation routine).

Function

1. Spherical
contours

Value
Attained Version I Version II

-2.045E+l* 90 90
-5.28 900 1050
-3.78 1350 1175
-2.97 2250 1350
-2.48 2700 i440
-1.80 4400 1440
-1.36 5500 1525
-1.26 5840 1620
-1.00 10,750 1700
- .753 13,400 1890
- .472 14,400 2150
- .268 17,820 2700
- .218 28,600 2790
- .217 >38,300 2790

*aEb is Fortran for a x lob

25

TABLE 3b

The number of generations required by Version II using quadratic

mutation (2) V.S. variable limit mutation (5).

Function

2. Index

4. Wood

Value
Attained (21 (5)

-700 10 20
-400 15 50
-300 36 70
-200 75 110
-100 190 170
- 80 260 190
- 60 310 220
- 40 550 260
- 20 >4200 470

- 15.0 7
- 10.0 9
- 9.0 10
- 4.0 12
- 2.0 15
- 1.0 46

.5 60

.l >700

.Ol >700

10

20
40
60
70
80

170
370

26

TABLE 3c

The number of generations required by Version II using a pure gradient

mutation (1) V.S. a mixed strategy using 1) with probability 3/4 and

quadratic random (3) with probability l/4.*

Function

3. Index
squared

Value
Attained

-100
- 10

: 6"
- 5

1

9
34

l----
43
55
64

3/4(1)+1/4(3)

10
34
35
41
45

*Note that 1) also uses more function evaluations per generation
than does 3/4(1)+1/4(3).

27

TABLE 3d

The number of generations required by version I with "best saved"

strategy versus "best not saved."

Function

3. Index Squared

Value Attained Best Saved Best not Saved

-.198E5 10 10

-.llE5 20 30

-.7E4 40 50

-.5E4 50 90

-.4E4 70 120

-.3E4 90 160

-:2E4 110 310

-.lE4 190 '4700

28

and inversion) do not play much of a role. However when we used gradient

mutation (i.e., Fletcher-Reeves with q = 1) we found that it worked

better in conjunction with random mutation than alone (see Table 3~).

It was apparent that the mutation often changed the best string in

a given population for the worse. When we saved the best string in each

subpopulation by replacing the worst string with the mutation results

from the best string, the performance was increased several fold. (Table 3d).

5.2 Inversion and Crossover

We called the Version I kind of cross-over best-with-best because

cross-over only occurred between the best strings in each subpopulation.

Since mutation can cause good alleles (coordinate values) to appear in

a string and still make the string bad by making some alleles bad,

best with best cross-over does not use all its potential. For this

intuitive reason and other reasons based on our theoretical concept of

crossover we tried crossing over the best strings with randomly selected

strings so that only part of the time are the best strings crossed over

with each other (see the description of Version II). This improved

performance considerably as shown in Table 4.

We examined the effectiveness of crossover and inversion where no

mutation routines were used. Here one expects that the ultimate function

value level attained is governed by the alleles present in the initial

population (since none can be introduced by the mutation) so the real

test is whether crossover and inversion can operate to select the best

alleles of those available. That this is possible is indicated in Table

5, where the alleles in the final population are no worse than the second

best of those initially available.

We also tested the effectiveness of crossover in bringing together

29

TABLE 4

The number of generations required to reachindicated level by

crossing over best with best (BB) V.S. best with random (BR).*

Function

1. Spherical
contours

3 . . Index
squared

4. Wood
function

Function
value attained BB BR

-500 10 6
-400 19 15
-300 48 36
-200 190 75
-100 >400 190

-10,000 16 16
- 8,000 30 22
- 6,000 50 34
- 4,000 108 75
- 2,000 >2700 200

-15 2 7
-10 9 9
- 9 21 10
-4 32 12
-2 >600 15

*Version I using mutation 2) (uniform random)

30

TABLE 5

The effectiveness of Verison IV with no mutation and 1 crossover

per generation.

I The two smallest* values of
alleles in 1st four co-or-
dinates available in initial

Function population

2. Index 1 2

. 3835 .0488

-.6048 .0976

After generation 12 only
one string remained:

1 2 3 4

-.6048 .0488 .1774 .1181

*Clearly, for the index function, the smallest are the best.
31

"good" alleles in another way. Table 6 shows that Version IV without a

crossover routine was unable to achieve the ultimate performance of

Version IV using 2 crossovers per generation.

The effectiveness of inversion was similarly tested (Table 7).

5.3 Comparison of Versions II and III

The motivation for constructing the version III system was as follows:

It seemed probable that a lot of "excess baggageIf was being carried

along in the four subpopulations with the result that more function evalua-

tions were being used than was necessary. However, were we to reduce

the nwnber of subpopulations to two or three, only two.inversion patterns

would be compared in general. Thus on a function some of whose variables

are linked, inversion patterns would not be tested rapidly enough to

improve the effectiveness of cross-over. On the other hand, if the size

of the subpopulations were reduced to say five or six strings each, cross-

over would have been less effect. Thus it appeared that one must do

without subpopulations to achieve the smaller sized (total) population.

But subpopulations were maintained primarily to preserve a single

inversion pattern. Comparing of subpopulations was thus a test of the

effectiveness of inversion patterns. How can this be achieved without

subpopulations?

Doing away with subpopulations also forces the question: What

strings will be crossed over and how? Suppose that only strings having

the same inversion pattern may be crossed over.Suppose the function has

n variables. Then there are n!/2 essentially different inversion pat-

terns since any permutation of the variables is an inversion pattern,

but turning any inversion pattern end for end preserves clumpings. This

means that for functions with more than three or four variables cross-over

%.e., redundant information

32

TABLE 6

Number of function evaluations required by Version IV with and without

crossover (all other parameters fixed).

Function

2. Index

Value Attained

-6.03E2

-3.4E2

-1.65B2

-6.87El

-2.05El

-8.07EO

-3.19Eo

-.9.99El

-5.82E-1

-3.59E-1

-2.68~-1

-l.BOE-1

-7.7E-2

-4.9E-2

Without Crossover With Crossover*

75 225

750 450

1500 1125

2250 2475

3000 4500

4500 6750

6000 8100

7500 10,080

9000 10,800

10,500 11,210

12,000 11,700

15,000 12,150

22,500 13,300

30,000 13,300

*using 2 consecutive crossovers

33

TABLE 7

Number of generations required by Version I with and without

inversion (all other parameters fixed).

Function

5. Valleys

Value Attained No Inversion Inversion

6.7 10 10
4.5 30 30
4.0 40 30
3.0 60 50
2.2 90 60
2.0 150 70
1.5 170 100
1.3 260 140
1.0 380 150

.9 440 340

.7 520 360

.6 570 360

34

would take place very seldom in a set of strings which have individual

inversion patterns. Therefore a more general kind of cross-over must be

employed. As already indicated, we tried crossing over two strings with

different inversion patterns by picking two pivot points as before but

applying the pivot points to the string with the better function value

and simply exchanging the alleles involved with the corresponding alleles

of the worse string no matter where those alleles are in the string.

This kind of cross-over allows unrestricted cross-over with only a

slight computing cost to find the "corresponding alleles". It asswnes

that the string with the better function vaZue usuaZZy has the better

inversion pattern. That is, that the inversion pattern clumps the right

variables. Although this type of cross-over is only slightly different

from the first, its consequences are more difficult to predict. It seems

to be about half as effective at finding the best inversion pattern.

The results obtained from the version III and IV systems are often

uncertain because they have more than a dozen parameters. The purpose

of having open so many parameters was that we wished to be able to test

hypotheses which we had formulated as a result of our experience with

the version II system. These parameters have proved to be quite inter-

dependent. That is, we find that for any reasonable setting of all but

one parameters, (that one being arbitrary), varying the single parameter

has a strong effect on the efficiency of the system. However, having

found the optimal value for that parameter with the others fixed,

changing some of the other parameters frequently changes the optimal

value for the.one parameter by a.large amount. An important project

for the future will be to chart the interrelations involved.

However we were able to show that there were settings of Version III

parameters which yielded performance much superior to Version II (Table 8)

35

TABLE 8

The number of function evaluations required to reach indicated function

value by Version II V.S. Version III.

Function
Value

Attained Version II Version III

3. Index 8000 630 180
Squared 4700 1,260 440

3200 2,520 630
2200 2,835 1,080
950 4,400 1,710
700 5,350 1,800
500 7,550 2,250
200 13,200 3,150
80 18,300 3,780
40 21,400 4,590
10 34,300 6,930
7 35,900 9,000

36

thus justifying the change in system structure.

VI. Conclusions

If the reader finds himself unable to formulate a clear statement of

the results of our work to date, let us assure you that we feel ourselves to be

in the same position. We have constructed a class of algorithms which

are sufficiently complex to be highly interesting, but which at the same

time are not readily amenable to analytical study and classification?

Thus, without the benefit of theoretical guidance we are reduced to stab in

the dark experimentation. Moreover, since a single optimization run

takes hours to complete our rate of progress in obtaining data is

not as fast as our enthusiasm demands.

Within these cmstraints however, we have obtained suggestive results

concerning the comparative behavior of genetic and conjugate gradient

algorithms, and we have also come to some conclusions concerning the

effectiveness of various subcomponents of the genetic algorithms.

We have for example demonstrated optimization problems where encorporating

individually the crossover and inversion operators actually does achieve

a significant improvement in the rate of convergence (Tables 5,6,7).

Clearly much remains to be done in confirming or disconfirming these con-

clusions.

9 We look forward to a forthcoming book by J.H. Holland on adaptive systems
for possible help in this direction. Also some preliminary analysis will
appear in our Report (Foo and Bosworth, 1972).

37

APPENDIX

The following is a more mathematical description of the adaptation

used.

Let fi denote the function value of the best string (the one with the

highest function value) just before the ith mutation following the last

adaptation. Let f' denote the function value of the best string just before

the mutation which occurred just before the last adaptation. In the case

of the version I system i has values between 1 and ten. i has values between

one and an initialized integer, say i 0' in the case of the version II

system. Let i. denote i. for version II and ten for version I. Let
fi-fi 1

- di= f
f1-f'

i-l
for i=2,...,io and dl = f' . di is the percentage difference

in best function value between generations i-l and i. Let wi = di(i+l)/2.

In the case of subpopulations, each has its own best string and its

own average mutation for each generation. This requires double subscripting.

To avoid this we will only consider the version II system. The same methods

are used and an exact understanding of the version I system may be gained

from the program listings. Let ai denote the average of all mutations

used in the ith generation following the last adaptation. Let a' ccrres>ond

to f'. 10 The theoretical average of the ai over an infinite number of trials

loWhen a string is mutated using one of the methods which use the adaptation
parameter k?, a random number of coordinates are chosen to be mutated, sayth
i (1 2 i < n). If the "cubic" mutation is used an r. is chosen for the j
coordinate if it is to be mutated where r. E [-l,l].

3 The absolute values,
Ir.1, of these i numbers are averaged,
thJ string mutated was the kth

thJ average being say bk where
string to be mutated that generation. If

the "quadratic" mutation is used an r . and an r
coordinate if it is to be mutated whe% r

are chosen for the jth
E

the average be& b
2*i numbers
string mutated

Let ai denote the average o !2 all the bk in the ith
generation.

38

is .5 since the ri and r..
Jl

have absolute values uniformly distributed

between 0 and 1. Let a* and a* denote respectively the maximum and minimum

of the a i's including a' excluding ai .
0

If 1' is greater than 4-e. 1 is replaced by $1. If l' is less than

$4, L is replaced by i-1. If $L I &' I $l, k? is replaced by C'. If the

new t was less than an initialized constant, .4? was reset to the value & was

initialized to. The $ limit in the change of 1 is arbitrary obviously. The

above is a Bayesian approximation based on the assumption that the amount

of usable information stored in the history vector pertaining to the effect

of a generation of mutation on generations following the next one is negligible.

This same assumption is made when adapting the probability vector.

Let p be the probability of the mutation method under consideration (found

from the probability vector). If p is 0 the method was not used so go to

the next method. Let ki be the number of strings to which the method was

applied correspond to the ai (from adapting e). Let k' be the number just

before the last adaptation (like a' and f'). If m strings were mutated

each generation, over an infinite number of trials the ki should average

p.m. Thus let

p’ I

(I

@:wi+Cki)+ -ial] _ p.m . p,1o + p

iO
c wi i=l I)

39

p could be changed by no more than one tenth in the same manner as .& could

be changed by no more than one half. Therefore p was normally set to p'.

The probabilities in the vector had upper and lower limits as to numerical

size. The "probabilities" in the probability vector were not normalized.

You can easily see that this has no effect on the above computations since

the p used there is a true probability derived from the probability vector.

The limits on the vector were programmed so that no value in the probability

vector could be greater than 20.0 or less than 0.5 or 0.1 in the version I

or version II systems respectively.

40

VII. References

Athans, M. and Falb, P.L. (1966) "Optimal Control: An Introduction to the
Theory and Its Applications" McGraw-Hill.

Bagley, J.D. (1967) "The Behavior of Adaptive Systems Which Employ Genetic
and Correlation Algorithms" Doctoral Thesis. Department of Computer
and Communication Sciences, The University of Michigan.

Bellman, R. (1959) Adaptive Control Processes: A Guided Tour, Princeton
University Press.

Bremermann, H.J.; Rogson, M.; Salaff, S. (1966) "Global Properties of
Evolution Processes" in Natural Automata and Useful SimuZations.
Spartan Books.

Brioschi, F. and Locatelli, A.F. (1967) "Extremization of Constrained
Multivariable Function: Structural Programming" IEEE Trans. on Sys.
Sci. and cy. ssc-3, 2.

Cavicchio, D.J. (1970) "Adaptive Search Using Simulated Evolution"
Doctoral Thesis. Department of Computer and Communication Sciences,
The University of Michigan.

Cohen, A.I. (1971) "Rate of Convergence of Several Conjugate Gradient
Algorithms" Fifth Annual Princeton Conference on Information Science
and Systems.

Cragg, E.E. and Levy, A.V. (1969) "Study on a Supermemory Gradient Method
for the Minimization of Functions" Journal of Optimization: Theory and
Application, 4, 3.

Davidon, W.C. (1966) Variable Metric Method for Minimization.
Argonne Nat. Lab. ANL-5990 (Rev. 2).

Feld'baum, A.A. (1966) Optimal Control Systems. Academic Press.

Fletcher, R. and Reeves, C.M. (1964) "Function Minimization by Conjugate
Gradients" The Computer J., 7, pp. 149-154.

Fletcher, R. and Powell, M.J.D. (1963) "A Rapidly Convenient Descent
Method for Minimization" The Computer J., 6, pp. 163-168.

Flood, M.M. and Leon, A. (1963) "A Direct Search Code for the Estimation
of Parameters in Stochastic Learning Models" Mental Health Research
Institute, The University of Michigan, Preprint 109.

Fogel, L.J.; Owens, A.J.; Walsh, M.J. (1966) ArtificiaZ Intelligence Through
SimuZated Evohtion. John Wiley and Sons, Inc.

Foo, N. and Bosworth, J.L. (1972) "Algebraic, Geometric, and Stochastic
Aspects of Genetic Operators." NASA CR-2099, 1972.

41

Hall, C.D. and Ratz, H.C. (1967) "The Automatic Design of Fractional
Factorial Experiments for Adaptive Process Optimization" Information
and ControZ, 11, pp. 505-527.

Hartmanis, J. and Stearns, R.E. (1969) "Computational Complexity"
Information Sciences.

Hill, J.D. (1969) "A Search Technique for Multimodal Surfaces"
IEEE Trans. on Sys. 5%. and Cy., SSC-3, January.

Holland, J.H. (1969) "A New Kind of Turnpike Theorem" BuZZe tin of
the American Math. Sot., 75, 6.

Hollstien, R.B. (1971) "Artificial Genetic Adaptation in Computer Control
Systems" Doctoral Thesis. Department of Computer Information and
Control Engineering, The University of Michigan.

Kalman, R.E.; Falb, P.L.; Arbib, M.A. (1969) Topics in Mathematical System
Theory. McGraw-Hill Book Co.

Lasdon, L.S. (1971) Optimization Theory for Large Systems. MacMillan.

Leon, A. (1965a) "A Classified Bibliography on Optimization" In Recent
Advances in Optimization Techniques. Lavi, A. and Vogl, T.P., eds.
John Wiley and Sons.

-, (1965bl "A Comparison Among Eight Known Optimization Procedures"
In Recent Advances in Optimization Techniques. Lavi, A. and Vogl, T-P.,
eds. John Wiley and Sons.

Luenberger, D.G. (1969) Optimization by Vector Space Methods.
John Wiley and Sons.

Mayr, E. (1965) Animal Species oxd EvbZution. Harvard University Press,
Cambridge.

Miele, A. and Cantrell, J.W. (1969) "Study on a Memory Gradient Method
for The Minimization of Functions" JournaZ of Optimization Theory oxd
AppZication, 3, 6.

Mishkin, E. and Braun, L. (1961) Adaptive ControZ Systems. McGraw-Hill
Book Co.

Pearson, J.D. (1968) "Decomposition in Multivariable Systems" IEEE
Trans. on Sys. Sci. mtd Cy., 1. SSC-4.

-, (1969) "Variable Metric Methods" The Computer JournaZ, 72, 2.

Polak, E. (1971) Computational Methods in Optimization - A Unified Approach.
Academic Press.

42

Rastrigin, L.A. (1963) "The Convergence of the Random Search Method in
the Extremal Control of a Many Parameter System" Atiomtion and Remote
Co&&., 24, pp. 1337-1342.

Rosenberg, R. (1967) tlSimulation of Genetic Populations with Biochemical
Properties" Doctoral Thesis, Department of Computer and Communication
Sciences, The University of Michigan.

Rosenbrock, H.H. (1960) "Automatic Method for Finding the Greatest or
Least Value of a Function" The Computer Journal, 3, pp. 175-184.

Schumer, M.A. and Steiglitz, K. (1968) "Adaptive Step Size Random Search"
IEEE Trans. on Aut. Control, AC-13, 3.

Shekel, J. (1971) "Test Functions for Multimodal Search Techniques"
Fifth Annual Princeton Conference on Information Science and Systems.

Spang, H.A. (1962) "A Review of Minimization Techniques for Non-Linear
Functions" SIAM Review, 4, pp. 343-365.

Sworder, D. (1966) Optimal Adaptive Control Systems. Academic Press.

Wilde, D.J. (1964) Optimum Seeking Methods. Prentice-Hall.

Wood, C.F. (1964) "Review of Design Optimization Techniques"
Westinghouse Research Laboratories, Science Paper 64-SC4-361-Pl.

Zeigler, B.P. (1969a) "On the Feedback Complexity of Automata" Doctoral
Thesis, Department of Computer and Communication Sciences, The
University of Michigan.

-9 U969bl "On the Feedback Complexity of Automata" Proceedings of
The Third Annuul Princeton Conference on Information Science and
Systems.

NASA-Lan@ey, 1972 - 19 CR-2093 43

